Transition from heterotypic to homotypic PDK1 homodimerization is essential for TCR-mediated NF-κB activation.
نویسندگان
چکیده
Strong NF-κB activation requires ligation of both the CD28 coreceptor and TCR. Phosphoinositide-dependent kinase 1 (PDK1) acts as a scaffold by binding both protein kinase Cθ (PKCθ) and CARMA1, and is therefore essential for signaling to NF-κB. In this article, we demonstrate the importance of PDK1 Thr(513) phosphorylation in regulating the intermolecular organization of PDK1 homodimers. Thr(513) is directly involved in heterotypic PDK1 homodimer formation, in which binding is mediated through the pleckstrin homology (PH) and kinase domains. Upon activation, phosphorylated Thr(513) instead mediates homotypic intermolecular binding through the PH domains. Consequently, cell-permeable peptides with a Thr(513) to Ile derivative (protein transduction domain [PTD]-PDK1-Thr(513)-Ile) bound the kinase domain, whereas a Thr(513)-to-Asp peptide (PTD-PDK1-Thr(513)-Asp) bound the PH domain. PTD-PDK1-Thr(513)-Ile blocked binding between PDK1 and PKCθ, phosphorylation of PKCθ Thr(538), and activation of both NF-κB and AKT. In contrast, PTD-PDK1- Thr(513)-Asp selectively inhibited binding between PDK1 and CARMA1, and blocked TCR/CD28-induced NF-κB activation. Therefore, Thr(513) phosphorylation regulates a critical intermolecular switch governing PDK1 homodimer structure and the capacity to interact with downstream signaling pathway components. Given the pleiotropic functions of PDK1, these data may open the door to the development of immunosuppressive therapies that selectively target the PDK1 to NF-κB pathway in T cell activation.
منابع مشابه
Transition from Heterotypic to Homotypic PDK1 Homodimerization Is Essential for TCR-Mediated NF-kB Activation
متن کامل
PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability
PDK1 is essential for T cell receptor (TCR)-mediated activation of NF-κB, and PDK1-induced phosphorylation of PKCθ is important for TCR-induced NF-κB activation. However, inverse regulation of PDK1 by PKCθ during T cell activation has not been investigated. In this study, we found that PKCθ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphor...
متن کاملThe Kinase PDK1 Is Essential for B-Cell Receptor Mediated Survival Signaling
Phosphoinositide-dependent kinase 1 (PDK1) plays an important role in integrating the T cell antigen receptor (TCR) and CD28 signals to achieve efficient NF-κB activation. PDK1 is also an important regulator of T cell development, mediating pre-TCR induced proliferation signals. However, the role of PDK1 in B cell antigen receptor (BCR) signaling and B cell development remains largely unknown. ...
متن کاملActivation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells
Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...
متن کاملNOTCH1 Can Initiate NF-κB Activation via Cytosolic Interactions with Components of the T Cell Signalosome
T cell stimulation requires the input and integration of external signals. Signaling through the T cell receptor (TCR) is known to induce formation of the membrane-tethered CBM complex, comprising CARMA1, BCL10, and MALT1, which is required for TCR-mediated NF-κB activation. TCR signaling has been shown to activate NOTCH proteins, transmembrane receptors also implicated in NF-κB activation. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 190 9 شماره
صفحات -
تاریخ انتشار 2013